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ABSTRACT 

Human-robot interaction could be improved by designing robots 

that engage in adaptive dialogue with users. An adaptive robot 

could estimate the information needs of individuals and change its 

dialogue to suit these needs. We test the value of adaptive robot 

dialogue by experimentally comparing the effects of adaptation 

versus no adaptation on information exchange and social 

relations. In Experiment 1, a robot chef adapted to novices by 

providing detailed explanations of cooking tools; doing so 

improved information exchange for novice participants but did 

not influence experts. Experiment 2 added incentives for speed 

and accuracy and replicated the results from Experiment 1 with 

respect to information exchange. When the robot’s dialogue was 

adapted for expert knowledge (names of tools rather than 

explanations), expert participants found the robot to be more 

effective, more authoritative, and less patronizing. This work 

suggests adaptation in human-robot interaction has consequences 

for both task performance and social cohesion. It also suggests 

that people may be more sensitive to social relations with robots 

when under task or time pressure. 

Categories and Subject Descriptors 

H.1.2 [Models and Principles]: User/Machine Systems – Human 

factors, Software psychology. H.5.2 [Information Interfaces and 

Presentation]: User Interfaces – Evaluation/methodology, Natural 

language, Theory and methods.  

General Terms 

Design, Experimentation, Human Factors, Performance, Theory. 

Keywords 

Human-robot interaction, social robots, human-robot 

communication, common ground, collaboration, perspective 

taking, adaptive dialogue.  

 

1. INTRODUCTION 
In this paper we explore how social robots might use adaptive 

dialogue to advise, instruct, guide, test, or interview a varied 

group of individuals. In these roles, the robot may need to help 

people understand instructions and identify objects, locations, or 

tools. We address the possible benefits of a robot adapting to 

individual differences in people’s knowledge and the possible 

costs of not doing so. The goal of our research is to improve our 

understanding of how best to achieve effective natural language 

communication with robots. 

 

Figure 1. Pearl as a robot chef. 

For numerous social roles, natural language dialogue seems 

particularly appropriate for robots [22]. For example, robot 

receptionists [13] and museum guides [24] can respond to 

questions. A tutor robot speaks English with Japanese children 

[17]. Robots using natural language can certainly be engaging 

[29], thus the number of robots that respond in natural language is 

growing. In addition, there are an increasing number of robots that 

respond to users via tone of voice, gaze, and gesture [3, 4]. The 

robot in Figure 1 was initially designed to interact with elders 

[25]. In the current research, the same robot serves as a chef 

robot, instructing novice and expert cooks with a male voice and 

responding to users’ typed input. 

Interactions with members of the public may particularly benefit 

from the use of adaptive dialogue. Robots designed as advisors or 

guides for public settings interact with a population diverse in its 

interests, background, and information requirements. An out-of-

town visitor conversing with a robot receptionist has different 

information needs than an employee. To a visitor seeking 

directions to someone’s office, the robot might need to say, 

“When you get to the red brick building in about 2 blocks, make a 
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left. The building you want is yellow and has a sign in the front, 

Blaylock A. Doctor Smith is on the second floor. You can take the 

elevator.” To an employee (for whom Blaylock A is a well-known 

landmark), the robot might say “Dr. Smith is in Blaylock A, 

second floor.”  

Little is known, thus far, about adaptivity in human-robot 

dialogue. The human-robot interaction community needs to learn 

if adaptivity will be worth the difficulty before creating robots that 

can identify, assess, and respond appropriately to individual 

differences in people. Generally, social robots respond in scripted 

ways that do not account for individual differences. For instance, 

Valerie the roboceptionist allows people to swipe an ID card to 

identify themselves, but this awareness has not yet been used to 

modify the robot’s dialogue for different types of people [13]. 

User modeling has been of interest to the dialogue systems 

community for some time. Some systems in the domain of travel 

scheduling do attempt to account for the knowledge and 

preferences of individual users [19, 21], although the adaptation 

in these systems is not embodied. A related development is the 

consideration of the individual’s perspective in physical space. 

Using a model of the listener’s spatial perspective, the robot can 

refer to objects in the shared physical space from the listener’s 

point of view [30].   

In the remainder of this paper, we first outline the theoretical 

background and hypotheses guiding our work on robot adaptivity. 

Our domain of interest is robots that can modify their language to 

meet listeners’ information needs. Then, we present two human-

robot interaction experiments in which the robot responds either 

in a manner appropriate for experts or in a manner appropriate for 

novices. We conclude with a discussion of the limitations, 

significance, and future directions of this work. 

2. THEORY AND HYPOTHESES 
We derive our theoretical framework from the literature on 

common ground and the grounding process that unfolds in 

conversation [7, 27]. People draw upon the knowledge and beliefs 

they share with their listeners when they formulate their messages. 

To identify this common ground, they make use of cues to  

listeners’ attributes such as their age, gender or group 

memberships [9]. In addition, speakers use listener feedback to 

refine their models of listeners’ expertise and adapt subsequent 

communications to meet these needs [16]. Communications 

designed specifically for a listener are understood more easily and 

result in more efficient communication than messages created for 

someone else or a generic listener [10, 28].   

Clark and Wilkes-Gibbs [6] have proposed the concept of “least 

collaborative effort” to explain why messages that are adaptive to 

a listener’s level of expertise are more successful.  With 

appropriate messages, listeners can simply say “ok” or otherwise 

indicate that they understand. In contrast, messages that are 

inappropriately adapted to listeners’ expertise will require more 

overall effort by both parties. If the message is too detailed, as 

would be the case if directions for an out-of-towner were given to 

a local resident, the speaker has put forth more effort than 

necessary. If the message is not detailed enough, as would be the 

case if directions for a local resident were given to an out-of-

towner, subsequent clarifying discussion will be necessary. 

Adapting to one’s audience not only improves communication 

efficiency, but also helps maintain positive affect between 

speakers and listeners. When too little information is provided, 

listeners may interpret the sparse information as a sign that the 

speaker has no concern for their needs. Similarly, when too much 

information is provided, listeners may feel insulted. In general, 

people are motivated to maintain each other’s “face” or positive 

impression of themselves [14].  One way in which speakers do so 

is by providing listeners with the right amount of information for 

their needs. Communications that threaten face can lead to 

negative evaluations of a speaker [15]. Appropriate adaptation has 

further been shown to facilitate social coordination and have other 

broad-reaching benefits for interaction [11, 12]. 

We can apply the theories of conversational grounding and 

literature on face saving to human-robot interaction in the 

following way. First, we assume that a robot can assess certain 

individual differences in users’ needs for information. For 

example, if the robot can identify individuals, it can distinguish 

between employees and first-time visitors. The robot can use 

social network data to estimate associations, and thus domains of 

knowledge. The robot could also use physical cues to people’s 

gender, nationality, or age to assess their expertise. Or, the robot 

might use conversation to assess the knowledge of others. Second, 

we assume the robot can vary its dialogue to suit its estimate of 

the knowledge of others, thereby facilitating the grounding 

process. Thus, when a robot gives directions to a person 

knowledgeable about the local area, it can assume more common 

ground than it does when it gives directions to a stranger. In the 

former case, the robot can use efficient terminology, such as 

names of landmarks, whereas in the latter case, it will need to 

provide more detailed explanation. Following the principle of 

least collaborative effort, we argue that the robot’s adaptation to 

the information needs of individuals will increase the efficiency of 

information exchange. From the literature on face saving, we 

argue, further, that a robot that adapts to the knowledge of 

individuals will help them maintain face and improve their 

evaluation of the robot, as they will perceive the robot as 

understanding their needs and caring about them. 

From the above arguments, we predict that information exchange 

between a robot and novice versus a robot and expert will be 

differentially improved by an adaptive robot. The adaptive robot 

will provide more explanation and detailed description to novices 

than to experts. Novices will gain the information they need to 

succeed in their task when the robot adapts to their greater need 

for information. They will be less likely to succeed if the robot is 

not adaptive to their information needs. By contrast, experts’ 

understanding and performance will not be affected. An adaptive 

robot should provide them with less explanation because they do 

not need it, but more explanation will not hurt.  

Hypothesis 1: Information exchange. The performance of 

novices will benefit from additional descriptive information, 

whereas the performance of experts will not.  

We make a different prediction for the social relations between a 

robot and novice versus a robot and expert. That is, the attitudes 

of both novices and experts toward the robot will be influenced by 

whether or not it is adaptive. Novices should appreciate a robot 

that adapts to their greater information needs, and experts should 

appreciate a robot that adapts to their lesser information needs. If 

the robot treats experts as though they are novices, the extra 



explanation does not hurt their task performance, but it does 

indicate a disregard for their level of expertise. Thus, experts 

should not like the nonadaptive robot.  

Hypothesis 2: Social Relations. Novices will like the robot more 

when offered additional descriptive information, whereas experts 

will like the robot less.  

3. EMPIRICAL STUDIES 
We examined the value of adaptive dialogue by comparing the 

outcomes of receiving adaptive dialogue with the outcomes of 

receiving nonadaptive dialogue. The two experiments engaged 

participants in a cooking-related task aided by a robot with 

expertise in cooking.  

To identify adaptive and nonadaptive descriptive language for 

individuals with different expertise, we developed a short test to 

categorize expert and novice cooks. We placed novices and 

experts in two experimental conditions and observed their 

interactions with the chef robot. The robot asked participants to 

identify pictures of cooking tools used in making crème brulée, a 

gourmet dessert of custard topped with caramelized sugar. In one 

condition, the robot simply named the cooking tools. This 

dialogue was adapted for expert cooks. In the other condition, the 

robot described and explained the function of each tool. This 

dialogue was adapted for novices. 

We measured two kinds of outcomes. The research on human-

human communication cited above suggests that adaptation 

affects information exchange and social relations. We thus 

measured participants’ understanding of the robot and their ability 

to choose the right cooking tools, and we measured participants’ 

regard for the robot and their attributions of its personality traits. 

3.1 Identifying Experts & Novices 
We developed a simple test to measure participants’ cooking 

expertise. Sixteen pilot participants identified ten cooking tools 

from among a set of possible choices (see example in Figure 2). 

These participants also answered eight questions in which they 

matched definitions of cooking methods with the names of these 

methods. Pilot participants who could match the cooking methods 

with their definition were also able to correctly identify the 

cooking tools (r =.71, F [1, 15] = 15.4, p = .001). 

 

Figure 2. Screen display for cooking tool selection task. 

Potential participants for the subsequent experiments were asked 

to complete a short pretest, matching the cooking methods with 

their definitions. Participants who scored 100% on this pretest 

were classified as experts; they are likely to be able to identify all 

of the cooking tools by name as well. Those who scored less than 

50% were classified as novices. 

Although it would have been possible for the robot to identify 

participants’ expertise at the time of the experiment through an 

interview (asking them the same questions that were on the 

pretest), we chose to differentiate between novices and experts by 

giving the test before the experiment. Our purpose was to remove 

potential participants with ambiguous levels of expertise, that is, 

those who scored better than 50% but less than 100% on the test. 

In doing so, we could efficiently test our hypotheses.    

3.2 Experiment 1 
Experiment 1 tested the effects of dialogue that was matched to 

individuals’ expertise compared to dialogue that was mismatched. 

We predicted (Hypothesis 1) that novices who received 

mismatched dialogue would experience a negative impact on the 

quality of information exchange. We also predicted (Hypothesis 

2) that both novices and experts who received mismatched 

dialogue would experience a negative impact on the social 

relation dimension. 

To investigate our hypotheses, we used the cooking tool selection 

questions exactly as they appeared in the pilot testing. The 

participants' goal was to select ten cooking tools needed to make a 

crème brûlée dessert. Participants selected the tool by clicking on 

the correct picture on a computer monitor. Each of the ten tools 

was displayed separately alongside five incorrect tools. The robot 

conversationally led the participant through the task, requesting 

each of the tools in turn, and answering participants’ questions. 

Participants could ask the robot as many questions as they wished. 

3.2.1 Method 
The experiment was a 2X2 (expertise X dialogue) between-

subjects design. We varied expertise, as previously described, by 

administering an online test prior to participation and selecting 

novices and experts for comparison. We created two dialogue 

conditions. In the first condition, the "Names Only" condition, the 

robot directed the participant to the tool by identifying the tool by 

name. This condition was hypothesized to be more suitable for 

experts. In the second condition, the "Names Plus Description" 

condition, the robot named the tool and further described it in 

several sentences. This condition was hypothesized to be more 

suitable for novices with little knowledge about the proper names 

of cooking tools (see Table 1 for example description). 

Table 1. Example directions for finding the paring knife. 
 

Condition Robot Dialogue 

Names Only 
Next you want a sharp paring knife. Find the 

paring knife. 

Names Plus 

Description 

Next you want a sharp paring knife. Find the 

paring knife. It's usually the smallest knife in 

a set. It has a short, pointed blade that is 

good for peeling fruit. The blade is smooth, 

not jagged. 



3.2.1.1 Participants 
Forty-nine students and staff members with no prior participation 

in our experiments were recruited from Carnegie Mellon 

University. They were each paid $10 for their participation in this 

experiment. 

3.2.1.2 Robot 
The robot used for this experiment was originally designed to 

interact with people in a nursing home [25]. In this experiment, 

the robot was stationary and was dressed to appear like a cooking 

expert. The robot wore a white chef’s hat and apron and spoke 

with a male voice. The robot opened its eyes at the start of the 

experiment and closed them at the end. While speaking, the 

robot’s lips moved in synchrony with its words. The robot’s face 

is articulated and is capable of a range of expressions, but the full 

range of expression was not utilized in this experiment. By 

limiting the robot’s movement, we were better able to isolate the 

effect of the robot’s language use. 

3.2.1.3 Procedure 
When participants arrived at the experimental lab, the 

experimenter told the participant that the robot had been given 

“specific expertise” in cooking, and that “the robot will be talking 

to you about the tools needed to make a crème brûlée dessert.”  

 

 

Figure 3. The experimental set-up. 

The robot spoke aloud and also displayed its messages on a 

display on the robot’s chest. The robot used Cepstral’s Theta [18] 

for speech synthesis, and its lips moved as it spoke. The text also 

showed on the screen, as in Instant Messenger interfaces. The 

interface was identical to the interface in [26] except that the 

dialogue technology was improved further, as discussed in the 

next section of this paper. 

Participants interacted with the robot by typing into the same 

Instant Messaging interface. We used a robot without speech 

recognition because of current limitations in speech understanding 

across individuals when the dialogue is complex, as in the current 

case.   

In the course of the dialogue, the robot prompted the participant 

to find cooking tools, e.g., “Find the picture of the saucepan.” The 

tools were shown on a nearby computer (see Figure 3). If the 

participants knew which tool was correct, they clicked the correct 

image and told the robot that they found the right tool. If the 

participant did not recognize the name of the cooking tool, they 

could ask the robot questions about the tool, using the IM 

interface (some participants spoke out loud as well). Most of 

participants’ questions were about tool properties like shape 

(“does it have a round bottom”), color (“what color is it”), and 

usage (“what is it for”). The robot was programmed to respond to 

most of these inquiries. 

All the participants’ responses to the robot were logged. After 

conversing with the robot, the participant completed a survey 

about their perceptions of the robot and their conversational 

interaction. 

3.2.1.4 Dialogue Technology 
The robot interpreted and responded to participant input using a 

customized variant of Artificial Intelligence Mark-up Language 

(AIML) [31], a publicly available pattern-matching text processor. 

In previous experiments, we found that the existing 

implementation of AIML could not respond well to participants’ 

questions, in part because it could not make use of dialogue 

context. To gain more control over the flow of the dialogue, we 

wrapped another technology layer around AIML and made 

significant changes to how AIML is processed. These 

modifications greatly improved the robot’s ability to understand 

and respond intelligently. 

We modified the dialogue empirically through iterative pilot 

testing. For instance, in the course of the experiment, participants 

had to tell the robot that they found the tool. Participants 

expressed this in different ways, so we compiled a list of over 50 

phrases for confirming the user had made a choice, such as “I 

made a guess,” and “I actually knew that one.” In the second 

experiment, the robot misunderstood this type of expression only 

once out of 480 confirmation-related responses.  

 

Figure 4. The robot’s responses were automated with a 

customized version of AIML. 

Participants also asked different kinds of questions about cooking 

tools, such as “is the ramekin made out of glass,” or “does it have 

one handle or two?” (See Figure 4 for an example dialogue.) To 

meet this need, we created an AIML-based database of cooking 

tools, tool properties, and answers to questions about tool 

properties. We ran pilot experiments and examined participants’ 

questions, focusing on questions that the robot did not answer 

correctly. After each successive pilot test, and again following 

Experiment 1, we revised the knowledge base and iteratively 

improved the coverage of the robot’s responses. 

We also improved the search algorithms AIML uses to find 

matching responses. We replaced AIML’s depth-first search with 

an A* search, and we added priorities and a system for finding the 

best match to a question (formerly, AIML stopped searching on 

the first find). These and other changes drastically reduced the 



robot’s errors. In Experiment 1, when the robot answered a 

participant’s questions, the robot’s error rate due to AI failure was 

only 15%, and most of that (14.5%) was because the robot’s 

knowledge base did not contain that information about the object. 

When the robot did not know the answer to a question, it either 

said “I don’t know” or it gave a little more information about the 

object (“It [the saucepan] is medium-size, maybe two quarts, and 

has high, straight sides”). 

Participants in the pilot studies for this and previous experiments 

sometimes made spelling and grammatical errors, for example, 

“ahve” instead of “have” (see last line, Figure 4). To interpret 

these responses, we used the Aspell spell checker [1] to find 

spelling errors and correct them automatically in the robot’s 

interpreter. When the AI did not understand a word, it tried many 

alternative spellings and used the best match.  

3.2.1.5 Measures 
We measured interaction with the robot on two dimensions, 

information exchange and social relations. In the course of telling 

the participant about making crème brûlée, the robot asked the 

participant to identify ten cooking tools. We measured 

information exchange as the number of questions participants 

asked about the tools. A greater frequency indicates the 

participant did not know which tool was correct and needed more 

information.  We also measured the accuracy of their performance 

as the number of tools they got correct. We did not expect large 

differences in performance, because the participants could keep 

asking the robot questions until they thought they understood 

which cooking tool was correct. We also measured the time each 

participant spent on the task and the number of misunderstandings 

with the robot. 

We assessed participants’ social relations with the robot through 

self-report items on a questionnaire. Participants completed this 

questionnaire following their interaction with the robot. The 

questionnaire covered three general areas of interest: participants’ 

impressions of the robot’s personality and intellectual 

characteristics (authority, sociability, intelligence), participants’ 

evaluation of the quality of the communication (effectiveness, 

responsiveness, control), and participants’ evaluations of the task 

(enjoyability, ease).   

Table 2. Scale reliabilities for measures of social relations. 

Scale (Cronbach’s Alpha*) Sample Item 

Robot Authority (0.72) Expert/Inexpert 

Robot Responsiveness (0.76) My partner can adapt to 

changing situations. 

Conversational Control (0.86) My partner was more 

active in the 

conversation than I was. 

Conversational Effectiveness (0.90) I found the conversation 

to be very useful and 

helpful. 

Task Difficulty (0.77) This task was difficult. 

Task Enjoyability (0.75) I enjoyed participating 

in this task. 

* Cronbach’s Alpha is a measure of the reliability of the scale as a 

whole. Alpha ranges from zero to 1.0 (highest). 

To assess users’ perception of the robot’s authority [20], and 

sociability and intelligence [32], we used existing scales from the 

social psychology literature. We used these scales in their entirety. 

We also selected items from a published (but lengthy) 

communicative effectiveness scale [5] and from a communicative 

competence scale [33]. We also created scales for task 

enjoyability and task difficulty. We conducted factor analysis on 

the scales after collecting data in Experiment 1 to confirm that the 

scales were appropriate for evaluating a robot. The reliabilities for 

the scales are shown in Table 2. 

3.2.2 Experiment 1 Results & Discussion 
The robot asked participants to identify 10 cooking tools. We 

considered the participants’ number of questions as the measure 

of information exchange. The number of questions reflects the 

amount of uncertainty the participant has about which cooking 

tool is correct and is related to the amount of effort exerted by the 

participant in communicating with the robot. As pictured in 

Figure 5, there was a significant interaction between expertise and 

the dialogue condition (F [3, 48] = 9.99, p <.01). Novices were 

negatively impacted by the absence of additional detail in the 

Names Only condition. Experts were not harmed by the additional 

detail the robot gave them in the Names Plus Description 

condition. We thus find support for our first hypothesis. Without 

an appropriate amount of detail, novices had to work harder to 

communicate with the robot and get the information they 

required. 
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Figure 5. Novice users were affected disproportionately by the 

robot’s lack of description. 

Our second hypothesis predicted that a mismatch between 

expertise and dialogue condition would have consequences for 

social relations. We checked our measures of social relations via 

the questionnaire data, but there were no significant interactions. 

Because the length of the interaction was short and there were no 

incentives for finishing quickly, we considered the possibility that 

participants may not have felt strongly about the social 

consequences of too much or too little information even if the 

communication was ineffective. To make the task more 

compelling, we decided to add a monetary incentive for accuracy 

and a monetary incentive for speed to the experimental design. In 

the second experiment, our purpose was to create an experimental 

set-up in which the robot would really be contributing to their 

success or failure. 

In examining novice task performance, we found that novices 

made frequent errors on several of the cooking tools even when 

given an explicit description by the robot. In Experiment 2, we 



described these tools in even greater detail in the Names Plus 

Description condition. Our intention with this additional detail 

was to ensure success for novice users. For example, the new 

description of the paring knife added detail that the blade was not 

curved and emphasized that the blade was short. 

3.3 Experiment 2 
Our first hypothesis was confirmed in Experiment 1. 

Inappropriate adaptation does affect the amount of effort novices 

must exert in the process of information exchange. However, we 

did not see any effect of the interaction on social relations. To 

further investigate social relations in human-robot interaction, we 

added the element of time pressure to the conversation. We 

predicted that under pressure, giving experts information about 

which they are already familiar will strain the social relationship 

and will result in experts evaluating the robot more negatively. 

3.3.1 Method 
The design of Experiment 2 was the same as Experiment 1. The 

procedure was the same with the exception that we added 

incentives for speed and accuracy and, in the Names Plus 

Description condition, increased the detail of explanation of the 

three tools that novices were particularly likely to choose 

incorrectly in Experiment 1. 

3.3.1.1 Participants 
Forty-eight students and staff members with no prior participation 

in our experiments were recruited from Carnegie Mellon 

University. They were each paid $8 plus possible bonuses up to 

$15 for participation in the experiment. 

3.3.1.2 Procedure 
To create time pressure during the experiment, participants were 

informed in the written instructions that if they finished the task 

quickly, they would receive an additional $1 for every minute 

under the average participant time. The experimenter answered 

any questions about the experiment and started a timer when the 

participant typed "hello" to the robot to begin the task. We also 

had an incentive for accuracy. If participants correctly identified 

all ten items, they would receive an additional $3 in payment. We 

displayed a running timer on the monitor where the participants 

were selecting the cooking tools. When they began conversing 

with the robot, we started the timer, and it was visible the entire 

time they worked at the computer. 

3.3.1.3 Measures 
In addition to the measures gathered in the first experiment, we 

added eight questions to the post-experiment questionnaire. We 

predicted these scales would load on two social relations factors, 

patronizing communication and content appropriateness. The 

questionnaire data from Experiment 2 supports these concepts as 

scales (see Table 3). We added these to further explore the 

negative social consequences of nonadaptivity on experts.   

Table 3. Scale reliabilities for additional social measures. 

Scale (Cronbach’s Alpha) Sample Item 

Patronizing (0.90) My partner’s explanations 

can be condescending. 

Content Appropriateness (0.72) I got just the right amount of 

information from my partner. 

3.3.2 Experiment 2 Results & Discussion 
According to the first hypothesis, we expected to find that the 

omission of detail in the Names Only condition would have a 

negative consequence on information exchange for novices. 

Results from Experiment 1 support this hypothesis. In Experiment 

2, we found the same pattern of results found in Experiment 1 (see 

Figure 5). When detail was kept from novices, they had to ask 

significantly more questions than did experts in the same 

condition; there was no difference between experts and novices in 

the Names Plus Description condition (F [3, 47] = 10.9, p <.01).    

Our second hypothesis was that experts and novices would 

evaluate the robot more positively if the robot’s dialogue matched 

their level of expertise than if it did not. We expected to see 

significant statistical interactions for the variables related to social 

relations. On several key social dimensions, this hypothesis was 

supported by the data in Experiment 2.  

Three measures of social relationship produced a significant 

interaction (see Figure 6). First, the robot’s authority was 

perceived differently depending on level of expertise and dialogue 

condition (F [3, 47] = 6.3, p < .05). Participants who conversed
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Figure 6. Experts and novices evaluate the robot more positively when the dialogue is adaptive to their information needs. 



with the robot whose dialogue matched their level of expertise 

found the robot to be more authoritative than participants who 

conversed with a robot whose dialogue did not match their 

expertise. Thus, experts who interacted in the Names Only 

condition, and novices who interacted in the Names Plus 

Description condition thought the robot was more authoritative. 

Also, participants conversing with a robot whose dialogue 

matched their expertise thought the robot was less patronizing 

than a robot with mismatched dialogue (F [3, 47] = 4.5, p < .05). 

Finally, the questionnaire measure of communicative 

effectiveness, which included items like “Our conversation was 

successful,” also showed a significant interaction (F [3, 47] = 

10.97, p < .01). (See Figure 6.) 

Other measures of social relations achieved only marginal 

significance but were in the expected direction. That is, the 

appropriately matched robot was marginally seen as more 

responsive (F [3, 47] = 3.03, p = .08) and to have provided more 

appropriate content (F [3, 47] = 2.79, p = .10). In the same 

manner, those who interacted with the robot whose dialogue 

matched their expertise also tended to enjoy the task more and to 

be more willing to participate again (F [3, 47] = 2.49, p = .12).  
 

4. GENERAL DISCUSSION 
We conducted two experiments testing the effects of an adaptive 

versus a nonadaptive robot on information exchange and social 

relations. When the robot used a simple dialogue that pointed out 

cooking tools using their names, this dialogue was appropriate for 

experts (who knew about the tools) but not for novices. When the 

robot elaborated its description of the tools, this dialogue was 

appropriate for novices but not for experts. We showed that 

appropriate dialogue improved information exchange for novices 

and made no difference for experts. Further, when people were 

under time pressure, the adaptive dialogue improved social 

relations for both novices and experts. These results suggest that 

adaptation in human-robot interaction has consequences for both 

task performance and social cohesion. It also suggests that people 

may be more sensitive to social relations with robots when 

communication inefficiencies have actual consequences, as they 

did in Experiment 2. 

4.1 Limitations 
Certain tasks for which adaptive dialogue would be advantageous 

might be better suited to a speech-only interface. While the robot 

in these experiments does speak aloud, it does not respond to 

spoken input. We can only speculate that the same effects would 

be replicated with a speech-only interface. 

The robot did not classify experts and novices in these studies. 

We can only speculate that the same effects would apply if the 

robot asked the initial test questions, for example. We also did not 

study other ways of differentiating experts from novices. 

Moreover, we used a strategy of comparing the extremes of the 

distributions, leaving out people with moderate cooking expertise. 

Both of these aspects of the study limit the generalizability of the 

results and need to be examined further. Ideally, a robot would be 

able to understand and adapt to many gradations of expertise and 

user knowledge. 

Determining the best way for a robot to appropriately classify 

individual expertise requires further investigation. For instance, 

we used eight questions on cooking terms. The robot could use 

these and employ a heuristic for determining the split of expert 

versus novice users. When expertise is displayed for a particular 

kind of knowledge, the likelihood of knowing other things also 

changes. In this case, knowing certain cooking terms predicts that 

the names of cooking tools will also be known. More work needs 

to be done in other domains of expertise regarding the advantages 

of stereotyping users for the ease of human-robot interaction. 

4.2 Significance 
Despite its limitations, we believe this work suggests an important 

direction for future technical development and social analysis in 

human-robot interaction. We believe robots that interact with 

people with diverse needs will be more productive and effective if 

these robots can assess expertise and adapt. Our study suggests 

that adaptive robots will not only have instrumental advantages, 

for information exchange and efficient communication, but that 

they may have social advantages as well. 

4.3 Future Work 
Adaptive natural language dialogue will be a challenge on two 

dimensions. First, we face the challenge of assessing an 

individual’s level of knowledge and information requirements. 

The answer will differ across domains. Thus, in guiding people to 

locations, the robot can learn if they are employees who would be 

familiar with landmarks or visitors. In giving information to 

conference attendees, the robot can be aware of the program and 

the social network, using an individual’s social connections and 

authorship to understand if they are newcomers to the conference 

or well established researchers. The domain of giving advice or 

support to older adults may be quite different. In this case, the 

robot might need to assess the user’s physical and cognitive 

capabilities as well as the social context. 

Second, we need to know more about people’s responses to robots 

that adapt to them based on their individual differences. Related 

research suggests that people respond positively to being 

mirrored. People appreciate interactive technologies that exhibit 

similar personality styles [23] or mimic their gestures [2]. We 

have studied a different kind of adaptation, however. The robot 

did not imitate the user’s knowledge; instead, it responded to the 

user’s information needs. In future research we would like to 

explore the nonverbal dimensions of adaptation as well. For 

example, if the robot becomes aware that there is a lack of 

comprehension, it may raise its voice or use exaggerated 

enunciation. Assessment of this kind carries some risk that the 

adaptation may be interpreted as a negative evaluation of the 

person’s competence and could become insulting. Further 

research should illuminate ways adaptation can be used to 

maintain social relations between humans and robots while 

ensuring task success. 
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